On this page you can get a detailed analysis of a word or phrase, produced by the best artificial intelligence technology to date:
In geometry, an Archimedean solid is one of the 13 solids first enumerated by Archimedes. They are the convex uniform polyhedra composed of regular polygons meeting in identical vertices, excluding the five Platonic solids (which are composed of only one type of polygon), excluding the prisms and antiprisms, and excluding the pseudorhombicuboctahedron. They are a subset of the Johnson solids, whose regular polygonal faces do not need to meet in identical vertices.
"Identical vertices" means that each two vertices are symmetric to each other: A global isometry of the entire solid takes one vertex to the other while laying the solid directly on its initial position. Branko Grünbaum (2009) observed that a 14th polyhedron, the elongated square gyrobicupola (or pseudo-rhombicuboctahedron), meets a weaker definition of an Archimedean solid, in which "identical vertices" means merely that the faces surrounding each vertex are of the same types (i.e. each vertex looks the same from close up), so only a local isometry is required. Grünbaum pointed out a frequent error in which authors define Archimedean solids using this local definition but omit the 14th polyhedron. If only 13 polyhedra are to be listed, the definition must use global symmetries of the polyhedron rather than local neighborhoods.
Prisms and antiprisms, whose symmetry groups are the dihedral groups, are generally not considered to be Archimedean solids, even though their faces are regular polygons and their symmetry groups act transitively on their vertices. Excluding these two infinite families, there are 13 Archimedean solids. All the Archimedean solids (but not the elongated square gyrobicupola) can be made via Wythoff constructions from the Platonic solids with tetrahedral, octahedral and icosahedral symmetry.